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Abstract

This study is on the use of genetic algorithms (GAs) to develop estimation methodologies for the determination of
the thermal properties of thin films. The thermal conductivity and two contact resistances are thought to be simulta-
neously estimated. A GA is used to minimize a least squares objective function containing calculated and measured
temperatures. A photo-thermal technique is applied to acquire measured temperatures, while calculated data are
obtained from a one-dimensional conductive model. Experiments were performed on ZrO, thin films of different
thickness. The results from the analysis demonstrate that the proposed GA is a useful tool for the thermal charac-
terization of thin films. © 2001 Published by Elsevier Science Ltd.

1. Introduction

The development of thin film processing entails
considerable needs for thermal characterization. The
advanced materials produced this way involve dielectric
laying, semi-conductors in electronic, surface treatment
of optical components, thermal barrier of combustion
fields to name a few. It is common knowledge that the
thermal conductivity of a thin film less than 1 pum thick
can be much smaller than the property value of the bulk
material. This phenomenon is due to structural and
microstructural effects that can limit the photons free
mean path (defects, impurities, dislocations, grain joints,
...). Techniques for the thermal characterization of
these materials are very few. One can mention:

o the photoreflexion methods, which consist of analyz-
ing the reflectivity variation of a metallic film layered

on the thin film to be characterized [1,2];

* Corresponding author. Fax: +33-2-40-68-31-41.
E-mail address: stephane.orain@isitem.univ-nantes.fr (S.
Orain).

o the methods that involve a thermosensible electrical
resistance which is engraved on the thin film to be
characterized [3-5].

These methods allow the estimation of an effective

thermal conductivity, k., which quantifies the global

temperature decay between the metal and the substrate.

The film conductivity, k, can then be deduced from £k,

using an equivalent thermal circuit of the series com-

posite material:

' =k + (Rur + Riy)e ™, (1)

where e is the film thickness and, R, and Ry are the
thermal resistances of the contact metal/film and film/
substrate, respectively. These resistances are due to
breakings of the crystalline lattice periodicity and
existence of both defects (dislocations, gaps, impurities)
and components of conductivity interdiffusion in the
interfacial zone neighboring. Most of researchers do not
take these resistances into account, and more particu-
larly R.c. However, these resistances, which are on the
order of 1078-10"7 m®> K W', should not be neglected,
especially when the film thickness is less than 1 um. The
estimation of the effective conductivity k. most often
presents a limited interest as it does not allow the con-
tact resistances to be distinguished separately.
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Nomenclature
a thermal diffusivity
b thermal effusivity

C product of heat capacity with density and
layer thickness

Cp specific heat

e film thickness

k thermal conductivity

g number of generations performed by the GA

ng population size used with the GA

np number of parameters

N; number of observations (per experiment and
over time)

y4 Laplace variable

0 short pulse energy

r correlation coefficient

R film thermal resistance

R, metal/film contact resistance

Ry film/substrate contact resistance
S least squares function (°C?)

t time

T temperature

T; initial temperature

14 voltage

X sensitivity coefficient (dimensionless)
X sensitivity matrix

Greek symbols

p parameter to be estimated
B parameter vector

A variation

0 temperature difference

o density

T time constant
Superscripts

+ normalized/dimensionless
~ experimental

Subscripts

a apparent

e effective

m metal

max maximum

r reference

S substrate

An estimation procedure adapted to the thermal
characterization of thin films is presented herein. It al-
lows the simultaneous estimation of the thermal con-
ductivity k& and the contact resistances R, and Ry.
Because these parameters are highly correlated, a genetic
algorithm (GA) is applied as the estimation procedure.
Indeed, correlation among simultaneously estimated
parameters can be a limiting factor of commonly used
gradient-based estimation methods. By imitating genetic
and selection mechanisms of nature, GAs are a non-
gradient technique and thus, are not limited by a high
correlation (provided the parameters are not a 100%
correlated). The parameters are estimated by minimizing
a least squares objective function containing calculated
and measured temperatures.

In the following, the principle of the experimental
technique, a photo-thermal technique, is given and, the
mathematical model is described. Next, the fundamen-
tals behind GAs are presented and the algorithm used is
briefly discussed. The methodology of the sensitivity
study performed prior applying the estimation pro-
cedure is then outlined. The final sections include first,
the demonstration of the necessity to estimate the ther-
mal resistance Ry, followed by the results and conclu-
sions from application of the GA to the thermal
characterization of ZrO, thin films of different thickness.
More particularly, the GA performance is compared
with those obtained from application of both a common
gradient-based method and a parametric study.

2. Description of the experimental technique
2.1. Principle

A measurement technique has been set up which al-
lows the determination of the thermal conductivity of
dielectric thin films. This technique belongs to the class
of photo-thermal techniques and is briefly described in
the following. A detailed description can be found in our
previous studies [5-7].

A metallic layer is deposited on the dielectric thin
film. The layer surface is irradiated by a laser short pulse
of duration seven nanoseconds and incident energy
0 =0.25J cm™2. The metal layer is used as a tempera-
ture sensor by connecting it to one branch of a Wheat-
stone bridge. An increase in the metal temperature
produces a voltage variation between two branches of
the bridge, which is detected by a transient recording
system (see Fig. 1). Calibration demonstrates that such a
voltage variation is a linear function in temperature as
shown in Eq. (2):

AV = V(1) ~ K = K(T(1) - T), 2)

where V; and 7;, and ¥V (¢) and T(¢) are the voltage and
uniform temperature of the metal layer, initially and at
time ¢, respectively, and K is a constant. A bridge bal-
ance is performed before irradiation to eliminate any
effect of ¥, and thus, be sensitive to temperature varia-
tion only. Sensitivity to a few mV/K can be obtained.
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Fig. 1. Principle of the method.

The temperature 7'(¢) reaches a maximum 7;,,, and then
decreases during a cooling phase.

The parameters of interest are identified by mini-
mizing the sum-of-squares error between calculated and
experimental normalized temperatures during the cool-
ing phase. The estimation procedure is performed over a
temporal sequence (of ~500 points) ranging from about
10% to 107¢ s. Temperatures are normalized (*) ac-
cording to:

0 = (3)

where 6 and 0, are the temperature rises measured at
time ¢ and at a reference time ¢,, respectively, as defined
below:

H(t) = T(t) —T; and Or(t) = T(t = tr) —T. (4)

Normalization by 0, ensures an analysis independent of
the pulse energy Q absorbed by the metal sensor and
avoids the determination of the constant K. The
parameter ¢, is chosen to maximize the sensitivity to the
unknown parameters (see Effect of normalization). In
practice, ¢, is found to be about 2 ps. The genetic al-
gorithm used as the estimation procedure is described in
the next section.

2.2. Mathematical model

The mathematical model is formulated to express the
temperature evolution in the metallic layer. The tem-
perature field is assumed one-dimensional in the direc-
tion through the layers. The metallic layer is considered
highly conductive compared to the dielectric substrate,

and this latter is approximated as a semi-infinite body.
This model is schematized in Fig. 2. The thermal prop-
erties are assumed constant in the temperature range
investigated. Convection and radiation are neglected.
The laser pulse is modeled as a dirac. All these simpli-
fying assumptions lead to the expression of the Laplace
transform of the metal temperature increase as a func-
tion of the layers thermal properties and their contact
surface:

0 = O(1 + /(R/C)bsth + p'*[Rus/(C/R)th
+ by(Rons + Ryy)]
+ P[RutRibo\/(C/R)R)) /(' [V/(C/R)ih + b.]
+ p[Ca + V/(C/R)Ribsth + Cr/ (R/C)bsth]
+ P [CouRune/(C/R) th + Conb(Rens + Res)]

+ P*[CRungResbs/ (C/R)th]) (5)
and
th = tanh (W),
R=e/k, ©
C = cype,

by = \ ksPst57

R
(Y] mf Rﬁ

0 T pC, thin film substrate

Fig. 2. Schematic of the mathematical model.
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where p is the Laplace variable, bs is the substrate effu-
sivity and, ¢, and p are heat capacity and density, re-
spectively, whose values are taken identical to the values
of the bulk materials. The substrate thickness and effu-
sivity are known from other measurements. The original
temperature 0 is obtained after numerical inversion. The
parameter vector P to be estimated include the thermal
conductivity of the thin film k, and the two contact re-
sistances R, and Ry, that is B = {k, Rur, Ry }-

3. Description of the genetic algorithm

One method to simultaneously estimate all unknown
parameters involves the minimization of an objective
function, the sum-of-squares error S, with respect to the
unknown parameters. In this work, the function S is
defined by

Ni

S)=> |01 6.7) - é,-*]z, ™)

i=1

where 07 (f,7) and 0 are the calculated and measured
normalized temperatures, respectively, and N; is the
number of measurements recorded over time. When
the parameters are correlated or nearly correlated, the
minimization of S using a common gradient-based
method such as the Gauss linearization method becomes
very difficult [8]. Indeed, in this case, gradient-directed
searching mechanisms can show instabilities resulting in
nonconvergence. Nongradient methods are then
suggested to handle correlation problems. GAs are ro-
bust nongradient algorithms that belong to the field of
evolutionary algorithms. They are neither bound to
assumptions about the derivative of S nor require pre-
requisites such as initial guess values. These features
makes them an excellent probabilistic search tool, which
can be used with models that contain correlated
parameters [9,10]. Because correlation exists among the
three properties k, Ryf,Rs in the mathematical model
given in Eq. (6), application of a GA is well-adapted to
the thermal characterization of thin films.

Like all evolutionary algorithms, GAs are based on
the principles of biological evolution by imitating
genetic and selection mechanisms of nature [11]. Each
solution of the vector B, also a potential minimum of the
function S, is called an individual. Because the param-
eters are real in this study, floating-point representation
is used; making an analogy with biological mechanisms,
an individual is a chromosome with as many genes as
there are unknown parameters, as illustrated in Fig. 3.

A GA generally starts by randomly generating an
initial population of a large number of individuals (ns)
within the parametric search space (see POP, in Fig. 4).
The individuals are then evaluated and ranked in terms
of a fitness function, the function S in this study. Over

Search domain (in k and R,,))

©) 0]
0 0 ©
] | Individual / solution
—L—
o o ® e
0 / .
o] o]
o © o 4 0]
k o
o _Eyg[l_ntyjr| o @\_:
0}
¢] Lo
gL |
0 o._._ 0 0 Gene Y
0 0 (parameter to estimate) ™~/
© © © o © Chromosome
R

mf
Global minimum O : Initial population

@ : Final population

Fig. 3. GA functioning schematic.

INITIALISATION
n,=0, POP(n,)
EVALUATIO

Evaluate and Rank
POP,,(n,)

SELECTION

Parents

!

CROSSOVER
Selected Parents

!

MUTATION
Children

v

ELITISM
Kept Parent + best Children
n,=n,+1

Convergence criterion satisfied ?

Fig. 4. Typical GA flowchart.

the course of several generations (), the sequential
application of the genetic operators selection, crossover,
mutation and elitism makes the population evolve to-
wards the region of the global minimum of S. A gen-
eration is accomplished when the sequence of genetic
operators is applied to the individual parents. A typical
GA flowchart appears in Fig. 4.

The selection operator determines the individual
parents allowed to undergo crossover. The better the
individuals are ranked, the higher their probability to be
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selected. Crossover, which is the key exploration mech-
anism of GAs, is the crossing of a pair of chromosome
parents to produce two chromosome children. The
crossover probability set the number of parents which
are simply cloned in the children generation. Mutation
allows the changing of one or several genes of a chro-
mosome children with a very small probability. The gene
mutated can be replaced in a “global manner” with a
random value (jump mutation) or in a “local manner”
with the addition or subtraction of a small value to the
gene (creep mutation). The mutation operator ensures
that diversity of gene values is kept. Finally, the elitism
operator is applied to keep the best solution(s) from one
generation to the next.

In summary, the fundamental ways in what real GAs
differentiate from gradient-based procedures are that
they search from a population of solutions, not a single
solution, they use payoff information (fitness function),
not derivatives or other auxiliary knowledge, and they
use probabilistic transition rules, not deterministic rules.

The genetic operators have all several variants. The
variants employed in our GA follow the approach ad-
vised by Davis [12] which is to tailor the algorithm at
hand. The GA scheme includes binary tournament se-
lection and arithmetic crossover, both with probability
0.9, jump and creep mutations with probabilities equal
to the inverse of the population size, and generational
replacement with probability 0.9 for elitism. In-depth
descriptions of these variants can be found in [10].

The GA produces as many generations as necessary
until the convergence criterion defined by the user is
reached. Because the mathematical model used for the
thermal characterization of thin films is not time inten-
sive, the criterion used in our GA is satisfied when first,
30 generations have been completed, and then, the best
solution does not change, or roughly, during 30 gener-
ations. If convergence is not reached, the run stops when
at most 200 generations have been completed. The ab-
sence of CPU time constraints also led us to choose a
population size of 300 individuals, considered adequate
for the simultaneous estimation of three parameters.

Due to the probabilistic nature of GAs, the deter-
mination of the global optimum requires a sufficient
number of estimation runs. A GA efficiency thus con-
sists of a balance between the search space definition and
exploitation of the best solutions. As for any identifi-
cation methods, approximate knowledge of the param-
eters to be estimated allows reduction of the number of
runs to perform.

4. Sensitivity study
The aim of performing a sensitivity study before

starting any estimation procedure is to evaluate the
possibility to simultaneously estimate all unknown

parameters. This depends on both magnitude of the
parameters sensitivity coefficients and correlation
among the parameters [8]. A sensitivity coefficient, X;, is
defined as the effect that a change in a particular pa-
rameter f has on the state variable, here the temperature
0:

_,00(r)
Xi(t) = B; . (8)
X; can be expressed in dimensionless form by
iy B 007(1)

The correlation coefficients are obtained by com-
puting the off-diagonal elements of the correlation
matrix. Assuming uncorrelated, additive, normally dis-
tributed errors with zero mean and constant variance,
errorless independent variables and no prior informa-
tion regarding the n, parameters [8], the correlation
coefficients can be approximated by

P; . _
r,-j:\/l_;;.‘:_é;, i,j=1,n, and P = [X'X] Y (10)
where X is the sensitivity matrix.

In this study, the magnitude of both the sensitivity
and correlation coefficients highly depends on the thin
film thickness and thermal conductivity. The materials
analyzed include dielectric films deposited with a thick-
ness from 0.1 to 10 pm and having a thermal conduc-
tivity from 0.1 to 10 W m~' K~'. This sensitivity study
has allowed the determination of
e which parameters could be simultaneously estimated

depending on the dielectric film property values,

e the time interval during which k, R,y and R could be
estimated, and,

o the reference time, giving the reference temperature
used to normalize the temperature evolution so that
sensitivity is maximized.

4.1. Sensitivity maximization and determination of the
time interval for estimation

As a rule of thumb, estimation should be performed
in the time interval where dimensionless sensitivity to all
parameters is greater than 0.1 in magnitude. In the case
the substrate is much more conductive than the film,
Fig. 5 shows that the maximum of sensitivity to the
thermal conductivity (X; as defined in Eq. (8)) occurs
around a time corresponding to the time constant of the
system, 7, whose expression is approximated by
&2

72 Co(Rop + R+ Rgy) + %

+R1'5C7 (11)

where a is the film thermal diffusivity. The variable ©
may take very different values depending on the
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Fig. 5. Selection of the time interval that maximizes sensitivity

to k.

materials nature and thickness: about 100 ns for a ce-
ramic layer and up to several microseconds for a poly-
mer. One can see on Fig. 5 that the time interval for
which X, > 0.1 takes place between ¢ = 0.2t and ¢ = 3.

One could also show that the maxima of sensitivity
to Ryr and Ry, occur around the times 7, and 7z, re-
spectively, equal to

Tmf = Rmfcm (12)
and
T = Ry (Con + C). (13)

In order to be able to simultaneously estimate the
three parameters k, R,,r and Ry, one has to select a time
interval that includes the maxima of sensitivity to each.
Fig. 6 shows the effect of both thermal conductivity and
thickness of the film on the maximum of dimensionless
sensitivity to Ry, k and Ry, in the case where Ry, and Ry
are set to 1 x 1077 m?> K W™'. One can notice that the
three sensitivity coefficients are about the same order of
magnitude. Sensitivity to the metal/dielectric film con-
tact resistance, Ry, increases with the dielectric thermal
conductivity but does not vary much with the film
thickness. Measurement of the thermal conductivity is
possible only if the material thermal resistance is larger
than the contact resistances. Estimation of Ry is possible
only for a very small thickness. Finally, one can remark
that the possibilities to simultaneously identify the three
parameters correspond to a very few experimental con-
ditions.

4.2. Effect of normalization

Normalization of the temperature evolution 6 by a
temperature 0, taken at a time reference ¢, highly effects

the shape and magnitude of the sensitivity coefficients.
With an aim to determining the time reference, it is
convenient to look at the normalized sensitivity coef-
ficient expressed by

X = X0~ 5 X6, (14)

T

where X? is obtained using Eq. (8). Fig. 7 shows that X;
is a function of the ratio of the reference time over the
characteristic time constant 7 defined in Eq. (10). One
can see that a reference temperature taken at a time
greater than 7 is adequate for normalization.

4.3. Correlation coefficient

Fig. 8 displays as a function of the film thickness and
thermal conductivity the correlation coefficients
r(Rme/k), r(Rmt/Rs) and r(k/Ryg), corresponding to the
degree of correlation between R,,r and k, Ry,r and Rg and
k and Ry, respectively. One can note that those coef-
ficients are often larger than 0.9, value for which, as a
rule of thumb, the parameters are considered correlated
or nearly correlated and gradient-based methods show
instabilities and failed to simultaneously estimate the
parameters [8]. Fig. 8 shows that the correlation coeffi-
cient increases as the film thickness decreases. It is close
to unity when the thickness is less than 100 nm. Indeed,
for a small thickness, the metal temperature evolution
can be approximated using

1

ﬁ“Q{Ta

— exp(oczt)e}ffc(a\/f)}, (15)
where

OC:Rmf+R+RfS(1 +£)

Cm
Eq. (15) confirms that for a small film thickness, Ry, k
and Ry, tend to be completely correlated. In other words,
an infinity of solutions {k, Rus, Re} exists which leads to
the same value of effective thermal resistance. In this
case, the solutions given by the GA contain very differ-
ent individual values but which provide the same value
for the sum-of-squares error S.

The high degree of correlation existing between the
film thermal conductivity and the film/substrate contact
resistance makes the simultaneous estimation of these
two properties very difficult. For this reason, it is con-
venient to introduce the notion of apparent thermal
conductivity, k,, which is characteristic of the tempera-
ture drop between the film and the substrate, and to
simultaneously estimate &, and R,. The apparent ther-
mal conductivity is defined by

K'=k" + Rye ™. (16)

Unlike the effective conductivity, the apparent conduc-
tivity does not take into account the interfacial
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Fig. 7. Xy, vs. t/t: determination of the reference time.

phenomena which are due to the sensor. Variations of k,
are therefore only the consequences to modification of
the thin film structure which are related to modification

of the elaboration process, the nature of the bulk ma-
terials, or the substrate rugosity.

4.4. Selection of the parameters to be estimated

This sensitivity study outlines that it is always pos-
sible to simultaneously estimate R, with a second pa-
rameter:

o [, if the film thickness is larger than 1 um,

e k,, if the film thickness is larger than 0.1 pm but less
than 1 pm, and,

® Ry, if the film thickness is less than 0.1 pum.

For a very small thickness (e < 50 nm), the parameters

are completely correlated and thus, only the effective

conductivity k. can be estimated.
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5. Results method allows the estimation of both the metal/film

First, the necessity to estimate the thermal contact
resistance R, is shown. Then, the GA effectiveness and
robustness is demonstrated using simulated data with
very difficult estimation conditions which correspond to
a large number of experimental conditions. Finally, the
efficiencies of three estimation procedures, namely the
GA, the Gauss method (gradient-based method) and
the parametric study are compared using experimental
data from ZrO, thin films of different thickness.

5.1. Necessity to estimate R,

When layering the metal sensor on a thick film
(e > 100 pm), it has been shown that our experimental

contact resistance, Ry, and the film effusivity, b, [6]. The
experimental results presented in Table 1 were obtained
using the Gauss method as the two parameters R, and b
are not correlated in thick film conditions.

On one hand, this investigation points out of the
effect on R,¢ of both the sensor and the substrate nature
and, of the layering process. One can also notice that the
effusivity values are comparable to the property values
of the bulk material. On the other hand, this investiga-
tion stresses the high dependence of R,r on the metal
thickness: Ry¢ is 3.5 larger when the metal thickness
varies from 200 to 350 nm, as illustrated on Fig. 9. This
phenomenon is due to the thermal stress undergone
during the evaporation in vacuum conditions. The
thermal stress is proportional to the metal layering time.
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Table 1
Effect of the layering technique and the metal and substrate nature on the contact resistance R
Layering technique Radiofrequency Evaporation
Metal/thick film Cu/Al,O; Cu/sio, Au/ALO; Au/SiO,
Rur (m2 K W) 8x10°¢ 1.5x 1077 1x107 2% 1077
b(Jm K s09) 9700 5820 9500 5450
3,087 : : : : with.the parameters k, Rur, an.d Ry set to true values
provided in Table 2. Then, uniform random errors of
7 7 standard deviation equal to 4% of the maximum tem-
~ asE7 _| perature are added to these exact data. The parameter
z vector B = {k,Ru, Ry} is thought to be estimated for
E 7 7 three different film thickness. The initial GA population
g 20e7 _| is generated in a large domain, that is & € [0.01,
z 1000 W m—=K™'] and Ry and Ry € [107'5, 107° m?
z 1 1 KW'
‘g 1,567 — - The performance of the GA was evaluated by av-
- eraging five runs, each realized with a different initial
% T T population, and calculating the means of each par-
2 oe7 - ameter and of the maximum sensitivities and correla-
tion coefficients. The results shown in Table 2 clearly
1 1 indicate that the GA allows the simultaneous estima-
5.0E-8 | | | | tion of highly correlated parameters. As one would
150 200 250 300 350 400 expect, the estimation procedure is more accurate as

Thickness (nm)

Fig. 9. Effect of internal stresses on the contact resistance Ry;.

One can realize that several parameters may effect the
value of R,¢ and therefore, it is crucial to estimate this
property simultaneously with the thermal conductivity if
one wants to study the thermal phenomena which take
place inside the film.

5.2. Simulation results and GA performance

The simulated data consist of first generating exact
temperatures using the analytical model given in Eq. (6)

the sensitivity coefficients are high, as outlined on Fig.
10. These simulated tests confirm the sensitivity study.
One can also see that the small magnitude of the sen-
sitivity coefficient of one parameter implies neither a
bias on the estimation of the other parameters, nor
algorithm instabilities.

5.3. Comparison of three estimation procedures using
experimental data

The experimental results presented here were ob-
tained from the analysis of ZrO, thin films of different
thickness deposited on alumna substrate. This experi-
mental study allows the testing of the efficiency and

Table 2
Results from simulation using GA
Thin film Parameters True Estimates Error (%)* Maximum Correlation
thickness values sensitivity coefficient
e =10,000 nm Rupp (m? K W) 1 x 1077 1.05 x 1077 4.8 0.15 F(Rme/k) = 0.81
k(Wm™' K™ 10 9.56 4.4 0.16 r(k/Rg) = 0.70
R (m? K W) 1x 107 1x10°% 90 0.02 (Rt /Riy) = 0.63
e = 500 nm Rpr (m> K W) 2.5%x 1077 2.57 x 1077 2.8 0.21 (R /k) = 0.91
k(Wm™' K™ 3 3.03 1.0 0.34 r(k/Rgs) = 0.99
R (m? K W) 1 x 1077 1.08 x 1078 8 0.10 (Rt /Rgs) = 0.95
e =100 nm Rpp (m? K W) 8x 1078 7.80 x 108 2.5 0.19 (R /k) = 0.90
k(Wm™ K™ 5 6.58 31.6 0.08 r(k/Rg) = 0.85
R (m? K W) 3x 1077 2.95%x 1078 1.67 0.29 F(Rme/Rys) = 0.92

#Percentage error between estimate and true value.
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Fig. 10.X; . X7, X; for two film thicknesses (estimate values
given in Table 2).

accuracy of three estimation procedures based on very
different principles: the parametric study based on iso-S
curves analysis, the Gauss method based on the gradient
computation with no regularization [8] and, GAs, based
on probabilistic rules. The fundamental behind the two
first methods are briefly explained in the following.
Results from application of these three methods can be
found in Table 3.

The parametric study consists of determining the
minimum of the sum-of-squares function S using, for
instance, graphical representation. This type of estima-
tion procedure only provides approximate values and
the risk of error is high, mainly because of the risk to
converge to a local minimum. This method becomes
tedious and time intensive for the estimation of more
than two parameters.

The Gauss method is very efficient to simultaneously
estimate R, andk when the film thickness is greater than
1 pm. For a smaller thickness, the correlation between

1.00 ¢ 17— T 0.03
b S (°C2)=3.516
0.80 —| RMS (% Tyay) =0.31 - 0.02
o i
E -
g 001 g
£ 0.60— E|
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0.00 0.40 0.80 1.20 1.60 2.00

Time (ps)

Fig. 11. Normalized residuals and temperature (ZrO, thickness
e = 166.6 nm).

the two properties is too high for the method to be stable
and to converge without regularization. One can then
identify k, only (or Rg only for e = 166.6 nm) by setting
Ry to its value estimated for a 2 pm-thick film. How-
ever, this setting introduces a bias for the estimation of
k. (or Rg). Note that, in this comparative study, one
chose the Gauss linearization method because it is an
efficient estimation procedure which is easy to im-
plement. However, it is possible that another gradient-
based estimation procedure, for instance the Levenberg—
Marquardt algorithm, could have been more efficient
than the Gauss method for the problem investigated
here.

The genetic algorithm allows the simultaneous esti-
mation of the two unknown parameters even for very
high degree of correlation. Furthermore, for 2000 nm-
thick-film (case of no high correlation where
r(Rme/k) = 0.85 < 0.9), the GA finds values of R,r and
k comparable to those obtained with the Gauss meth-
od. Fig. 11 displays, in the case of a ZrO, thin film of

Table 3
Comparison of the results obtained from experimental data using the parametric study, the Gauss method and the GA
Thickness (nm) Estimates Correlation coefficient Parametric study Gauss GA
2000 Rpp (m2 K W) 0.85 1.0 x 1077 1.5 x 1077 1.6 x 1077
k(Wm™ K™ 2.00 225 2.30
1000 Rpp (m2 K W) 0.91 1.5x 1077 N/A? 2.0 x 1077
ke (Wm™ K1) 1.50 1.70 1.67
250 Rpp (m2 K W) 0.98 3.0 x 1077 N/A 2.5%x 1077
ke (Wm™ K™ 1.00 0.90 0.96
166.6 Rpe (m2 K W) 0.99 1.6 x 1077 N/A 1.4 x 1077
Ry (m2 K W) 1.5x 1077 1.3 x 1077 1.4 x 1077

#Not applicable.
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Fig. 12. Sum-of-squares error S evolution vs. generation
number.

thickness 166.6 nm, the experimental and calculated
normalized temperatures along with the residuals. The
small values of both the sum-of-squares error
(S=3.5%x1073°C? and the root-mean-square error
(RMS=0.31% of the maximum temperature rise
AT.x) highlight the excellent behavior of the estima-
tion procedure. The correlation coefficient for that ex-
periment is 0.992. The decrease of the function S over
the generations is illustrated in Fig. 12 for both the best
individual and the average population. The population
and the best individual evolutions from the initial to
the final generation shown in Fig. 13 stress the GA
efficiency.
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6. Conclusion

The estimation procedure presented in this paper
allows the thermal characterization of thin films. It is
based on genetic algorithms and exploits their non-
gradient nature as a mechanism for the simultaneous
estimation of correlated properties. GAs therefore
overcome the main limitation of conventional simul-
taneous estimation techniques that depend on gradient
information. The application of this procedure can be
extended to the simultaneous estimation of a large
number of parameters (i.e., >3).

The thermal properties of interest were the thin film
thermal conductivity and the two contact resistances
metal/film and film/substrate. A sensitivity study was
performed to determine which parameters could be es-
timated depending on the film thickness and conduc-
tivity. The results using simulated data stressed the
robustness and accuracy of the GA and, the results using
experimental data obtained from the analysis of ZrO,
thin films of different thickness deposited on alumna
substrate showed the GA performance compared to the
Gauss linearization method and the parametric study.
Indeed, only the GA allowed the accurate simultaneous
estimation of correlated parameters. Note that the GA
scheme used in this work is by no means exhaustive and
other GAs could be used.

The experimental results indicated that for films
thicker than 1 pm, the film thermal conductivity is
equivalent to the property value of the bulk material.
Whereas for films less than 1 pm thick, a drop in the
conductivity can be observed. This phenomenon can be
explained by the important film/substrate contact re-
sistance.

tion forty

I
1.20E-7 1.60E-7 2.00E-7 2.40E-7 2.80E-7 3.20E-7
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Fig. 13. Evolution of both the population (left) and the best-so-far individual (right).
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Currently, experimental efforts are focused towards
improving the metal/film contact resistance in order to
improve the accuracy of the thermal conductivity esti-
mation which is about 10%. These efforts are also ex-
pected to enable in some cases the simultaneous
estimation of the three parameters of interest, the ther-
mal conductivity and the contact resistances metal/film
and film/substrate. Future work involves the analysis of
the effect of both the film structure and microstructure
on the parameters values.
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